Monday, July 29, 2013

The end of an era and the start of a new chapter

Well, there had to come a point when I pulled my finger out, pulled up my socks and opened my laptop to finally write a blogpost.

I know I've been utter pants over the last few months.

It's not as though I've had no news to share. I've probably had too much and I never even blogged about the impromptu moment I asked the legendary Michael Parkinson about his rubbish.

But now that the school holidays are upon us, this is the first occasion I've had to properly slow down since September last year and stay at home instead of gallivanting around the country.

And this holiday feels like a period of transition in more ways than one.

On a personal level, our youngest has just left primary school and is getting ready to start middle school in September.  Yes, that little man who was only 3 when I started this blog has just turned 9 and is growing up.  To watch him confidently leave one school and be ready to embark on the next stage of his life feels like a real milestone.

Elsewhere, I've spent the last 8 months coming to terms with my mother's unexpected death in December.  Nothing can prepare you for losing a parent and I'm very aware that the constant flow of activities and deadlines this year have kept me very distracted, so much so that when we completed the sale of her house last week, it kicked me so hard that it felt like she'd died all over again.  My mother taught me lots about what's important in life and much of that teaching was in her death.  One day, I hope to share her wisdom - not yet but soon - the wisdom of an average woman who would never have expected to have been considered remarkable but in many ways truly was.  I really wish she was still here to see what's around the corner.  I know she'd be one of the first to laugh at my misadventures and then, without me knowing, quietly share her pride.

For things are changing on The Rubbish Diet front and at a rate of knots too.  Remember that Nesta competition I entered last year in partnership with Cwm Harry and Rachelle Strauss from My Zero Waste?  We're still right in the middle of the challenge and following the success of running the Rubbish Diet in Suffolk and Shropshire (which even saw 22 households in one street taking part in Shrewsbury), the novel bin slimming action is spreading to Ludlow and very soon Powys, the latter of which will be launched during this year's National Zero Waste Week, 2-8 September.   If you haven't checked out Zero Waste Week yet, go and have a peek at its new website and do get involved, especially if you need to get tough with your food waste.

But there's lots happening between now and then.  Don't miss 'yours truly' helping a family slim their bin as part of the Throwaway Britain Tonight documentary, which is being broadcast this Thursday 1st August (9pm, ITV1).  Without giving away the final reveal, I can't wait for you to see how Sandra and her family tackled their waste. 

And to give you even further inspiration to reduce waste, I've been pulling together the first UK tour of the Clean Bin Project documentary, which will see my old Canadian blogging friend Jen and her partner Grant travelling around the UK, to attend screenings of their movie in Brighton, Suffolk, York, Shrewsbury (tbc) and Wiltshire.  The official dates and venues for late August will be published soon, but if you'd like to know more please email me.

But coming back to the most major thing that's happening in my life right now, although I'm taking time out to enjoy the events of the summer holidays and pause for reflection, it's also a time for significant change, especially as the success of The Rubbish Diet trials featured in the Nesta competition has led to much interest from a range of local authorities.

The Rubbish Diet has already travelled a long way from being just a random housewife with a blog.  In the last year, it has developed into a website and a team to support the Nesta Waste Reduction competition.  And now, still in conjunction with the 'Do Think' Tank Cwm Harry (the people who are also behind the People's Design Lab), we are preparing for the next stage, which will see The Rubbish Diet becoming a social enterprise, developed to help households and communities reduce their waste by 50% within as little time as eight weeks.  More info on the next stage will be available soon, as will the final results of the Nesta competition later in the year.  Meanwhile if The Rubbish Diet challenge launches in your neck of the woods, do join in and say hello.

With so much happening it really does feel like the end of an era and the beginning of an exciting and potentially nerve-wracking new chapter.

Thank you for sticking with the rubbish adventures of this Almost Mrs Average over the last five years.  I know there are lots more adventures to be had yet, but from now on it will be in a very different context.

I just hope I will still have time to blog about them.

Could grain-fed beef liver be particularly nutritious?


There is a pervasive belief today that grain-fed beef is unhealthy, a belief that I addressed before in this blog () and that I think is exaggerated. This general belief seems to also apply to a related meat, one that is widely acknowledged as a major micronutrient “powerhouse”, namely grain-fed beef liver.

Regarding grain-fed beef liver, the idea is that cattle that are grain-fed tend to develop a mild form of fatty liver disease. This I am inclined to agree with.

However, I am not convinced that this is such a bad thing for those who eat grain-fed beef liver.

In most animals, including Homo sapiens, fatty liver disease seems to be associated with extra load being put on the liver. Possible reasons for this are accelerated growth, abnormally high levels of body fat, and ingestion of toxins beyond a certain hormetic threshold (e.g., alcohol).

In these cases, what would one expect to see as a body response? The extra load is associated with high oxidative stress and rate of metabolic work. In response, the body should shuttle more antioxidants and metabolism catalysts to the organ being overloaded. Fat-soluble vitamins can act as antioxidants and catalysts in various metabolic processes, among other important functions. They require fat to be stored, and can then be released over time, which is a major advantage over water-soluble vitamins; fat-soluble vitamins are longer-acting.

So you would expect an overloaded liver to have more fat in it, and also a greater concentration of fat-soluble vitamins. This would include vitamin A, which would give the liver an unnatural color, toward the orange-yellow range of the spectrum.

Grain-fed beef liver, like the muscle meat of grain-fed cattle, tends to have more fat than that of grass-fed animals. One function of this extra fat could be to store fat-soluble vitamins. This extra fat appears to have a higher omega-6 fat content as well. Still, beef liver is a fairly lean meat; with about 5 g of fat per 100 g of weight, and only 20 mg or so of omega-6 fat. Clearly consumption of beef liver in moderation is unlikely to lead to a significant increase in omega-6 fat content in one’s diet (). By consumption in moderation I mean approximately once a week.

The photo below, from Wikipedia, is of a dish prepared with foie gras. That is essentially the liver of a duck or goose that has been fattened through force-feeding, until the animal develops fatty liver disease. This “diseased” liver is particularly rich in fat-soluble vitamins; e.g., it is the best known source of the all-important vitamin K2.



Could the same happen, although to a lesser extent, with grain-fed beef liver? I don’t think it is unreasonable to speculate that it could.

Monday, July 15, 2013

How can carrying some extra body fat be healthy?


Most of the empirical investigations into the association between body mass index (BMI) and mortality suggest that the lowest-mortality BMI is approximately on the border between the normal and overweight ranges. Or, as Peter put it (): "Getting fat is good."

As much as one may be tempted to explain this based only on the relative contribution of lean body mass to total weight, the evidence suggests that both body fat and lean body mass contribute to this phenomenon. In fact, the evidence suggests that carrying some extra body fat may be healthy for many.

Yet, the scientific evidence strongly suggests that body fat accumulation beyond a certain point is unhealthy. There seems to be a sweet spot of body fat percentage, and that sweet spot may vary a lot across different individuals.

One interesting aspect of most empirical investigations of the association between BMI and mortality is that the participants live in urban or semi-urban societies. When you look at hunter-gatherer societies, the picture seems to be a bit different. The graph below shows the distribution of BMIs among males in Kitava and Sweden, from a study by Lindeberg and colleagues ().



In Sweden, a lowest mortality BMI of 26 would correspond to a point on the x axis that would rise up approximately to the middle of the distribution of data points from Sweden in the graph. It is reasonable to assume that this would also happen in Kitava, in which case the lowest mortality BMI would be around 20.

One of the key differences between urbanites and hunter-gatherers is the greater energy expenditure among the latter; hunter-gatherers generally move more. This provides a clue as to why some extra body fat may be healthy among urbanites. Hunter-gatherers spend more energy, so they have to consume more “natural” food, and thus more nutrients, to maintain their lean body mass.

A person’s energy expenditure is strongly dependent on a few variables, including body weight and physical activity. Let us assume that a hunter-gatherer, due to a reasonably high level of physical activity, maintains a BMI of 20 while consuming 3,000 kilocalories (a.k.a. calories) per day. An urbanite with the same height, but a lower level of physical activity, may need a higher body weight, and thus a higher BMI, to consume 3,000 calories per day at maintenance.

And why would someone want to consume 3,000 calories per day? Why not 1,500? The reason is nutrient intake, particularly micronutrient intake – intake of vitamins and minerals that are used by the body in various processes. Unfortunately it seems that micronutrient supplementation (e.g., a multivitamin pill) is largely ineffective except in cases of pathological deficiency.

Urbanites may need to carry a bit of extra body fat to be able to have an appropriate intake of micronutrients to maintain their lean body structures in a healthy state. Obviously the type of food eaten matters a lot. A high nutrient-to-calorie ratio is generally desirable. However, we cannot forget that we also need to eat fat, in part because without it we cannot properly absorb the all-important fat-soluble vitamins. And dietary fat is the most calorie-dense nutrient of all.

Why not putting on extra muscle instead of carrying the extra fat? For one, that is not easy when you are a sedentary urbanite. Particularly after a certain age, if you try too hard you end up getting injured. But there is another interesting angle to consider. Humans, like many other animals, have genetic “protections” against high muscularity, such as the protein myostatin. Myostatin is produced mostly in muscle cells; it acts on muscle, by inhibiting its growth.

Say what? Why would evolution favor something like myostatin? Big, muscular humans could be at the top of the food chain by physical strength alone; they could kill a lion with their bare hands. Well, it is possible. (Many men like to think of themselves as warriors, probably because most of them are not.) But evolution favors what works best given the ecological niches available. In our case, it favored bigger and more plastic brains to occupy what Steve Pinker called a “cognitive niche”.

Even though fat mass is not inert, secreting a number of hormones into the bloodstream, the micronutrient “need” of fat mass is likely much lower than the micronutrient need of non-fat mass. That is, a kilogram of lean mass likely puts a higher demand on micronutrients than a kilogram of fat mass. This should be particularly the case for organs, such as the liver, but also applies to muscle tissue.

While gaining muscle mass through moderate exercise is extremely healthy, bulking up beyond one’s natural limitations may actually backfire. It could increase the demand for micronutrients above what a person can actually consume and absorb through a healthy nutritious diet. Some extra fat mass allows for a higher level of micronutrient intake at weight maintenance, with a lower demand for micronutrients than the same amount of extra lean mass.

Some people are naturally more muscular. Their frame and underlying organ-based capabilities probably support that. It is often visibly noticeable when they go beyond their organ-based capabilities. A common trait among many professional bodybuilders, who usually go beyond the genetic gifts that they naturally have, is an abnormal swelling of internal organs.

What complicates this discussion is that all of this seems to vary from individual to individual. People have to find their sweet spots, and doing that may not be the simplest of tasks. For example, even measuring body fat percentage with some precision is difficult and costly. Also, certain types of fat are less desirable than others – visceral versus subcutaneous body fat. It is not easy differentiating one from the other ().

How do you find your sweet spot in terms of body fat percentage? One of the most promising approaches is to find the point at which your waist-to-weight ratio is minimized ().

Monday, July 1, 2013

An illustration of the waist-to-weight ratio theory: The fit2fat2fit experiment


In my previous blog post, I argued that one’s optimal weight may be the one that minimizes one’s waist-to-weight ratio. I built this argument based on the fact that body fat percentage is associated with lean body mass (and also weight) in a nonlinear way.

The fit2fat2fit experiment (), provides what seems to be an interestingly way to put this optimal waist-to-weight ratio theory to test. This is due to a fortuitous event, as I explain in this post.

In this experiment, Drew Manning, a personal trainer, decided to undergo a transformation where he went from what he argued was his fittest level, all the way to obese, and then back to fit again. He said that he wanted to do that so that he could better understand his clients’ struggles. This may be true, but it looks like he planned very well his experiment from a marketing perspective.

His fittest level was at the start, with a weight of 193 lbs, at a height of 6 ft 2 in. That was his fittest level according to his own opinion. At that point, he had a waist of 34.5 in, and looked indeed very fit (). At his fattest level, he reached the weight of 264.8 pounds, with a 47.5 waist.

As he moved back to fit, one interesting thing happened. Toward the end of this journey back to fit, he moved past the level that he felt was his optimal. He dropped down to 190.1 lbs, and a 34 in waist; which he perceived as too skinny. He talks about this in a video ().

As a self-defined “fanatic” personal trainer, I figured that he knew when he had gone too far. That is, he is probably as qualified as one can get to identify the point at which he moved past his optimal. So I thought that this would be an interesting way of putting my optimal waist-to-weight ratio theory to the test.

Below is a bar chart showing variations in waist-to-weight ratio against weight for Drew Manning during his fit2fat2fit experiment. I included only three data points in this chart because I would have to view all of his video clips to get all of the data points.



As you can see, at the point at which he felt he was too thin, his waist-to-weight ratio clearly started going up from what seems to have been its optimal at 34.5 in / 193 lbs. This is exactly what you would expect based on my optimal waist-to-weight ratio theory. You probably can’t tell that something was not right at that point, because he looked very fit.

But apparently he felt that something was not entirely right. And that is consistent with the idea that he had passed his optimal waist-to-weight ratio, and became too lean for his own good. Note that his waist decreased, and probably could go down even further, even though that was no longer optimal.

 
Design by Free WordPress Themes | Bloggerized by Lasantha - Premium Blogger Themes | Justin Bieber, Gold Price in India